Near-Infrared 808 nm Light Boosts Complex IV-Dependent Respiration and Rescues a Parkinson-Related pink1 Model
نویسندگان
چکیده
Mitochondrial electron transport chain (ETC) defects are observed in Parkinson's disease (PD) patients and in PD fly- and mouse-models; however it remains to be tested if acute improvement of ETC function alleviates PD-relevant defects. We tested the hypothesis that 808 nm infrared light that effectively penetrates tissues rescues pink1 mutants. We show that irradiating isolated fly or mouse mitochondria with 808 nm light that is absorbed by ETC-Complex IV acutely improves Complex IV-dependent oxygen consumption and ATP production, a feature that is wavelength-specific. Irradiating Drosophila pink1 mutants using a single dose of 808 nm light results in a rescue of major systemic and mitochondrial defects. Time-course experiments indicate mitochondrial membrane potential defects are rescued prior to mitochondrial morphological defects, also in dopaminergic neurons, suggesting mitochondrial functional defects precede mitochondrial swelling. Thus, our data indicate that improvement of mitochondrial function using infrared light stimulation is a viable strategy to alleviate pink1-related defects.
منابع مشابه
The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants
Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC); however, the primary defect in pink1 mutants is unclear. We tested the hypo...
متن کاملPhotobiomodulation Suppresses Alpha-Synuclein-Induced Toxicity in an AAV-Based Rat Genetic Model of Parkinson’s Disease
Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM), may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral over...
متن کاملRet rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants
Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We inves...
متن کاملCardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency
PINK1 is mutated in Parkinson's disease (PD), and mutations cause mitochondrial defects that include inefficient electron transport between complex I and ubiquinone. Neurodegeneration is also connected to changes in lipid homeostasis, but how these are related to PINK1-induced mitochondrial dysfunction is unknown. Based on an unbiased genetic screen, we found that partial genetic and pharmacolo...
متن کاملTumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light.
A novel cancer cell lysosome-targetable multifunctional NO-delivery nanoplatform (Lyso-Ru-NO@FA@C-TiO2) (1) was developed. It selectively targets folate-receptor overexpressed cancer cells and specifically locates within the lysosome organelle to which NO and reactive oxygen species are simultaneously released upon 808 nm NIR light irradiation. The dual-targeted nanoplatform (1) demonstrated th...
متن کامل